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Abstract—In this paper, we tackle the problem of computing
the inverse moments of random Gram matrices with one side
correlation. The problem is motivated by signal processing
and wireless communications applications where such matrices
naturally arise. For instance, we provide a closed-form expression
for the inverse moments and show how it can exactly analyze the
performance of the best linear unbiased estimator in terms of
the mean square error.

Index Terms—Inverse moments, Gram matrices, One-sided
correlation, BLUE, mean square error.

I. INTRODUCTION

Recent advances in spectral analysis of large random ma-
trices has attracted a lot of interest in the computation of
moments of random matrices [1,2]. These works are mainly
driven by the potential of moments in the behavior under-
standing of certain scalar functionals of random matrices that
naturally arise in signal processing and wireless communi-
cation applications. For instance, the work in [1] allows to
use asymptotic moments in order to get some insights on the
transmit power of multiple signal sources. Also, the authors in
[3] analyzed the behavior of asymptotic moments in the aim
of the design of low complexity receiver that compares to the
linear minimum mean square error (LMMSE) in performance.
Although relying on the asymptotic moments permits to have
closed-form results on the performance and enables more
tractable designs from which insights can be extracted easily,
it fails to provide accurate results as long as finite dimensions
are considered. As a matter of fact, asymptotic moments are
not of much interest in the finite dimension case and thus the
exact approach has to be considered alternatively.

In fact, as far as Gram random matrices are considered,
the exact approach relies on the available expression of the
marginal eigenvalues’ density that has been limited to the
computation of moments for Wishart random matrices [4,5].
As such, the case of random Gram matrices has never been
thoroughly investigated to the best of the authors’ knowledge.

This paper tackles this problem and thus provides an answer
to the so-far unsolved problem of computing the inverse mo-
ments of Gram random matrices. More precisely, we consider
the exact derivation of moments of random matrices taking
the form S = H∗ΛH, where H is a n × m (n > m)
matrix with independent and identically distributed (i.i.d) zero-
mean unit variance complex Gaussian random entries, and
Λ is a deterministic n × n positive definite matrix. Our
derivations are mainly based on the already derived Mellin

transform [6]. However, the expressions provided in [6] are
not straightforward to use since it make appear singularity
issues as it will be shown in the course of the paper. Having
the exact inverse moments in hands permits to revisit some
problems in signal detection in signal processing, a problem
that is of tremendous importance to the signal processing
community. Interestingly, we show that we can exactly analyze
the performance of the best linear unbiased estimator (BLUE)
in terms of mean square error.

The remainder of this paper is organized as follows. In
section II, we present the motivations behind the current work.
In section III, we provide the main result of the paper with
a detailed proof. In section IV, we provide some numerical
results that validate our theoretical result. We then conclude
the paper in section V.

Notations: Throughout this paper, we use the following
notation: E (X) stands for the expectation of a random quantity
X and EX (f) stands for the expected value of f with respect
to X. Matrices are denoted by bold capital letters, rows and
columns of the matrices are referred with lower case bold
letters (In is the size-n identity matrix). Given a matrix A,
we use [A]i,j to refer its (i, j)th entry and use At and A∗ to
respectively denote its transpose and Hermitian. When A is
a square matrix, we respectively denote by tr (A), det (A)
and ‖A‖ its trace, determinant and spectral norm. Finally,
we denote by diag [a1, a2, · · · , an] the diagonal matrix with
diagonal elements, a1, a2, · · · , an.

II. MOTIVATION (LINEAR ESTIMATION)

Estimating signals from sequence of observations has been
extensively studied in the signal processing literature [7]–
[9]. The problem can be solved if joint statistics relating the
observations and the unknown signal are available. However,
obtaining joint statistics is in general out of reach regarding the
unknown nature of the signal or simply because these kind of
information is unavailable. This limitation can be addressed by
considering sub-optimal techniques for minimizing the mean
square error. As an alternative, one can think of applying
a linear transformation to the observed vector. While this
technique is sub-optimal in nature, it provides a more tractable
framework and allows to explicitly analyze the system perfor-
mance.

Consider the case where the output and the input are related
as follows

y = Hx + z, (1)



where y ∈ Cn×1 is the observed vector, H ∈ Cn×m the
channel matrix, x ∈ Cm×1 the unknown signal vector and z ∈
Cn×1 the noise vector with covariance matrix Σz . Here, H
represents the channel matrix of a block fading model, where it
is assumed to be constant during a given time interval (block)
and changes independently from one block to the next. In
this line, it is of tremendous importance to focus on average
performances by taking expectation over H. In what follows,
we make the following assumptions

• H is a (n×m) matrix with i.i.d complex zero mean unit
variance Gaussian random entries,

• z is a (n× 1) zero mean additive Gaussian noise with
covariance matrix Σz = E{zz∗}, i.e. z ∼ CN (0n,Σz).

Let n > m, and assume that the noise covariance matrix Σz

is perfectly known, then the best linear unbiased estimator
(BLUE) [8] recovers x as

x̂blue =
(
H∗Σ−1z H

)−1
H∗Σ−1z y

= x +
(
H∗Σ−1z H

)−1
H∗Σ−1z z

= x + eblue,

(2)

where eblue =
(
H∗Σ−1z H

)−1
H∗Σ−1z z is the residual error

after applying the BLUE, where the covariance matrix of
eblue is given by Σe,blue = E{ebluee∗blue} =

(
H∗Σ−1z H

)−1
.

Consequently, the BLUE average estimation error can be
derived as follows

EH{‖x̂blue − x‖2} = EHtr [Σe,blue]

= EHtr
[(

H∗Σ−1z H
)−1]

.
(3)

To the best of the authors knowledge, the quantity
EHtr

[(
H∗Σ−1z H

)−1]
has never been expressed in closed-

form. This constitutes the main motivation of the current paper.
In the sequel, we solve the general case where we derive
closed-form expressions for the moments given by

µΛ (r) ,
1

m
tr [EH{Sr}] , 1 ≤ r ≤ p = min (m,n−m) .

(4)
where S = H∗ΛH is a Gram matrix and Λ is a determinis-
tic (n× n) positive definite matrix with distinct eigenvalues
(θ1 < · · · < θn).

III. EXACT CLOSED-FORM EXPRESSION FOR THE
MOMENTS

In this section, we state the main contribution of this paper.
Before stating the main result, we start by providing some
useful definitions.

Lemma 1. [6, Theorem 2] Let S be as in (4). Then,

Mfλ(s) = L

m∑
j=1

m∑
i=1

D (i, j) Γ (s+ j − 1)

(
θn−m+s+j−2
n−m+i

−
n−m∑
l=1

n−m∑
k=1

[
Ψ−1]

k,l
θn−m+s+j−2
l θk−1

n−m+i

)
,

(5)

with L = det(Ψ)

m
∏n
k<l(θl−θk)

∏m−1
l=1 l!

, Γ(.) the Gamma function,

Ψ the (n−m)× (n−m) Vandermonde matrix given by

Ψ =

1 θ1 · · · θn−m−11
...

...
. . .

...
1 θn−m · · · θn−m−1n−m



and D (i, j) the (i, j)−cofactor of the (m×m) matrix C whose
(l, k)−th entry is given by

[C]l,k = (k − 1)!

(
θn−m+k−1
n−m+l −

n−m∑
p=1

n−m∑
q=1

[
Ψ−1

]
p,q

× θp−1n−m+lθ
n−m+k−1
q

)
.

From the Mellin transform expression, the inverse moments
defined in (4) can be obtained by a crude substitution of s
by −r − 1 with r ≥ 0. However, this is unfeasible since in
some terms in the sum the Gamma function will be applied
to negative integers on which it is not defined. This may lead
to a quick conclusion that the inverse moments are infinite.
However, relying on existing results on inverse moments of
Wishart matrices, lead us to suspect the feasibility of deriving
the inverse moments of Gram matrices. An intuitive way to
deal with the divergent behavior of the Gamma function is to
expect its contribution to be canceled out for some terms and
to converge to a limit with others. To study this behavior, we
resort to the study ofMfλ (s− r + 1) for infinitesimal values
of s. Such an intuition is confirmed by the following lemma.

Lemma 2. If r ≤ n−m, then the limit lims↓0Mfλ(s−r+1)
exists and

µΛ(−r) = lim
s↓0
Mfλ(s− r + 1).

Proof: See the proof of Lemma 2 in [10].

The key idea now is to observe that the expression of
Mfλ(s − r + 1) reveals that the sum over j makes appear
two types of terms. The first one corresponds to the indices
of j where the Gamma function is well defined (−r+ j−1 is
positive). The second, turns out to be more complex to analyze
as it contains indices where the Gamma function is evaluated
on negative values. Having said that, the Mellin transform
Mfλ(s− r + 1) is decomposed as follows

Mfλ(s− r + 1) =M1 (s− r + 1) +M2 (s− r + 1) , (6)



where

M1 (s) = L

r∑
j=1

m∑
i=1

D (i, j) Γ (s+ j − 1)

(
θn−m+s+j−2
n−m+i

−
n−m∑
l=1

n−m∑
k=1

[
Ψ−1

]
k,l
θn−m+s+j−2
l θk−1n−m+i

)
.

M2 (s) = L

m∑
j=r+1

m∑
i=1

D (i, j) Γ (s+ j − 1)

(
θn−m+s+j−2
n−m+i

−
n−m∑
l=1

n−m∑
k=1

[
Ψ−1

]
k,l
θn−m+s+j−2
l θk−1n−m+i

)
.

Let’s start by handling the second term M2 (s− r + 1) that
gathers indices for which the Gamma function is evaluated on
positive integers. The following lemma shows that the limit of
the second term is zero as s ↓ 0 which means that it does not
contribute to the final expression of the moment.

Proposition 1. The term M2 (s− r + 1) vanishes as s goes
to zero i.e,

lim
s→0
M2 (s− r + 1) = 0, r = 1, · · · ,m.

Proof: Note that

lim
s→0
M2 (s− r + 1)

= L

m∑
j=r+1

m∑
i=1

D (i, j) Γ (−r + j)

×

(
θn−m−r+j−1
n−m+i −

n−m∑
l=1

n−m∑
k=1

[
Ψ−1]

k,l
θn−m−r+j−1
l θk−1

n−m+i

)

= L

m∑
j=r+1

m∑
i=1

[D]i,j [C]i,j−r

= L

m∑
j=r+1

[
DtC

]
j,j−r

,

where D and C are as defined in Lemma 1. Since D is the
cofactor of C, then DtC = det (C) Im. Therefore, [DtC]j,j−r =
0 for j = r + 1, · · · ,m.

Consequently, the final expression of the moment is totally
governed by the limit of the first term M1 (s− r + 1). To
provide the final expression of its limit, we are going to need
the following piece of notation.

aj =
[
θn−m−r+j−11 , θn−m−r+j−12 , · · · , θn−m−r+j−1n−m

]t
.

bi =
[
1, θn−m+i, · · · , θn−m−1n−m+i

]t
.

Di = diag

[
log

(
θn−m+i

θ1

)
, log

(
θn−m+i

θ2

)
,

· · · , log

(
θn−m+i

θn−m

)]
.

Having defined the previous notations, we are now in position
to state the following result

Proposition 2. Let p = min (m,n−m), then for 1 ≤ r ≤ p
we have

lim
s→0
M1 (s− r + 1)

= L

r∑
j=1

m∑
i=1

D (i, j)
(−1)r−j

(r − j)! bt
iΨ
−1Diaj .

Proof: The handling of M1 (s− r + 1) is delicate be-
cause it involves evaluation of the Gamma function at negative
integers. Hopefully, a compensation effect occurs due to the
multiplicative term in front of the Gamma function. The
proof relies on a divide and conquer strategy that consists
of decomposing M1 (s− r + 1) into a sum of terms and
then evaluating each term separately. To this end, we need
to introduce the following notation.

Ψs ,

 θs1 θ1+s1 · · · θn−m+s−1
1

...
...

. . .
...

θsn−m θ1+sn−m · · · θn−m+s−1
n−m

 .
as,j ,

[
θn−m+s−r+j−1
1 , θn−m+s−r+j−1

2 ,

· · · , θn−m+s−r+j−1
n−m

]t
.

bs,i ,
[
θsn−m+i, θ

1+s
n−m+i, · · · , θ

n−m+s−1
n−m+i

]t
.

ek , [zeros (n−m− k − 1) , 1, zeros (k)]
t
,

k = 0, · · · , n−m− 1,

(7)

where zeros (k) is the zero vector of dimension k. Using the
previously defined varaibles, we can rewrite M1 (s− r + 1)
as in (8) (on top of the next page).

The first term in equation (8) is equal to zero. This can
be seen by noticing that Ψser−j = as,j and bts,ier−j =

θn−m+s−r+j−1
n−m+i . Thus, Ψ−1s as,j = er−j and consequently

bts,iΨ
−1
s as,j = θn−m+s−r+j−1

n−m+i .
It remains thus to deal with the last two terms. Using a Taylor
approximation of bs,i as s approaching 0, we have

bs,i − bi = s

[
log (θn−m+i) , θn−m+i log (θn−m+i) ,

· · · , θn−m−1n−m+i log (θn−m+i)

]t
+ o (s)

= s log (θn−m+i) bi + o (s) .

(9)

To deal with the Gamma function evaluated at non positive
integers, we rely on the result of the following lemma.

Lemma 3. [11] For non positive arguments −k, k =
0, 1, 2, · · · , the Gamma function can be evaluated as

lim
s→0

Γ (s− k)

Γ (s)
=

(−1)
k

k!
, (10)

where Γ (s) = 1
s + o(s) as s approaches 0.

Thus, Γ (s− r + j) =
s→0

(−1)r−j
s(r−j)! + o(s). Therefore , as s



M1 (s− r + 1) = L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

(
θn−m+s−r+j−1
n−m+i −

n−m∑
l=1

n−m∑
k=1

[
Ψ−1

]
k,l
θn−m+s−r+j−1
l θk−1n−m+i

)

= L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

(
θn−m+s−r+j−1
n−m+i − btiΨ

−1as,j

)

= L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

(
θn−m+s−r+j−1
n−m+i − btiΨ

−1
s as,j

)
+ L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

× bti
(
Ψ−1s −Ψ−1

)
as,j

= L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

(
θn−m+s−r+j−1
n−m+i − bts,iΨ

−1
s as,j

)
+ L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j)

×
(
bts,i − bti

)
Ψ−1s as,j + L

r∑
j=1

m∑
i=1

D (i, j) Γ (s− r + j) bti
(
Ψ−1s −Ψ−1

)
as,j

(8)

approaches 0, we have

Γ (s− r + j)
(
bts,i − bti

)
Ψ−1s as,j

=
(−1)

r−j
log (θn−m+i)

(r − j)!
btiΨ

−1aj + o(s),

Finally, to deal with the last term, we use the following
resolvent identity

Ψ−1s −Ψ−1 = Ψ−1s (Ψ−Ψs) Ψ−1.

We also make use of the fact that as s approaches 0

(Ψ−Ψs) =
s→0
−sΨ̃ + o(s),

where

Ψ̃ = ΦΨ,

with Φ = diag [log (θ1) , log (θ2) , · · · , log (θn−m)]. Thus, as
s approaches 0, we have

Γ (s− r + j) bt
i

(
Ψ−1

s −Ψ−1)as,j

=
s→0

(−1)r+1−j

(r − j)! bt
iΨ
−1Ψ̃Ψ−1aj + o(s).

Finally, we have the following limit

lim
s→0
M1 (s− r + 1)

= L

r∑
j=1

m∑
i=1

D (i, j)

[
(−1)

r−j
log (θn−m+i)

(r − j)!
btiΨ

−1aj

+
(−1)

r+1−j

(r − j)!
btiΨ

−1Ψ̃Ψ−1aj

]
.

This expression can be further simplified by noticing that

Ψ̃Ψ−1 = Φ. Finally, we have

lim
s→0
M1 (s− r + 1)

= L

r∑
j=1

m∑
i=1

D (i, j)
(−1)

r−j

(r − j)!
btiΨ

−1

[
log (θn−m+i) In−m

−Φ

]
aj

= L

r∑
j=1

m∑
i=1

D (i, j)
(−1)

r−j

(r − j)!
btiΨ

−1Diaj .

Thereby ending up the proof of the proposition.
Taking into account the results of the above propositions,

the final expression of the inverse moments is given by the
following theorem.

Theorem 1. Let p = min (m,n−m), then for 1 ≤ r ≤ p,
we have

µΛ (−r) = L

r∑
j=1

m∑
i=1

D (i, j)
(−1)

r−j

(r − j)!
btiΨ

−1Diaj .

IV. NUMERICAL VALIDATION AND DISCUSSION

To validate the findings of Theorem 1, we start by com-
paring the BLUE normalized mean square error with its
corresponding exact value provided by the Theorem 1. Note
that the normalized mean square error for the BLUE can be
expressed as

NMSE(blue) ,
1

m
EH{‖x̂blue − x‖2}, (11)

where x and xblue are as defined in (1) and (2) respectively.
Let’s assume that the channel matrix H has a transmit corre-
lation matrix given by Λ, i.e. H = Λ

1
2 W, where W has i.i.d

zero-mean unit variance complex Gaussian random entries and
Λ adopts the following structure

[Λ]i,j = J0

(
π |i− j|2

)
, (12)

where J0 (.) is the zero-order Bessel function of the first kind.
This kind of matrices is widely used to model the correlation
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Figure 1: BLUE average estimation error for m = 3: Monte
Carlo simulation (5×104 realizations) versus theory (Theorem
1)

between transmit antennas in a dense scattering environment
[6,12]. For simplicity, we also assume that Σz = In

1. Based
on (3), the NMSE(blue) is thus given by

NMSE(blue) = µΛ (−1) . (13)

As shown in Figure 1, the theoretical formula of the inverse
moment obtained in theorem 1 exactly matches the perfor-
mance given by the Monte Carlo simulation.

To further validate our theoretical findings, we compare
µΛ (r) with the normalized asymptotic moments derived in
[10, Theorem 2] and the empirical moments obtained by
simulation. It is clear from Figure 2 that the theoretical
inverse moments (Theorem 1) perfectly match the empirical
moments (Monte Carlo simulation) for all moment orders,
r ∈ {−4,−3,−2,−1}. On the other hand, we can notice
that the accuracy of the asymptotic approach improves as n
increases. However, the accuracy deteriorates as we increase
n, that is the asymptotic provides better accuracy for lower
order moments as compared to higher order moments.

V. CONCLUSION

This paper provides a closed-form expression to evaluate
the inverse moments of one side correlated Gram matrices. In
addition, the paper investigated a possible application for the
derived result which is the exact evaluation of the performance
of the BLUE in terms of mean square error.
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